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TECHNICAL PAPER

BUCKLING OF COMPOSITE BEAMS

INTRODUCTION

Torsion/bending coupling is an interesting, inherent phenomenon occurring in open-section

structural elements subjected to bending and/or combined axial/bending loads. The benefits of using

open-section beams are many: stackability, weight savings, and dual functions (e.g., serving as load

carriers as well as conduits). Likewise, composites offer advantages over their metallic counter-

parts; primarily, their higher strength-to-weight ratios and lower coefficients of thermal expansion

(CTE) are favorable. This type beam is used extensively in the aircraft industry in the fuselage sup-

port structure and wing supports, and has present and potential future use in aerospace applications;
namely tankage stiffeners, intertank stiffeners, and as primary load carriers in truss work. However,

in each of the aforementioned applications the layups are symmetric in nature. By understanding the

bending/torsion effects indigenous to open-section beams one can make use of the tailorability of

composites (to achieve desired optimum material properties) without compromise to the design

(e.g., no added plies to accomplish symmetry).

Antisymmetric layups lend themselves well to thin-walled structural members. With an

average ply thickness of 0.005 in, a beam of wall thickness less than 0.040 in (8 plies) is difficult to

manufacture using a symmetric laminate layup.

Even an open-section beam made of an isotropic material has an inherent tendency to bend

and twist if the transverse load is applied anywhere other than along the plane of the shear center.

A transverse load applied to such open sections undergoes pure bending only when the load is

applied at points along the shear center located outside the section. 1 As Valsov illustrates, an open

section not loaded at points along its shear center will twist and bend as in figure l(b). Figure l(a)

shows the same open-section beam with no load applied. In the case with loading at the shear

center, notice that pure bending results, as in figure l(c).

As in symmetrically laminated structural elements, unsymmetrically laminated elements can

have many different resultant properties depending on the chosen material system, ply orientations,
and layup sequence. 2 Add these factors to the bending/twisting coupling inherent to an open section

loaded transversely and one can easily surmise the difficulties that might be associated with design-

ing using unsymmetric, open-section structural elements.

Characterization of the relationship between angle of twist and ply orientation is one of the

objectives of this paper. This is being done based strictly on test results, with results of the analyti-

cal aspect to be presented in a later paper. Also examined and presented here are the results of

testing involving shear center location, load application relative to shear center, and the resulting

angle of twist on open-section beams. Curves depicting these parameters and the various inter-

relationships are contained in this paper.
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APPROACH

To reach the first objective (characterization of the relationship between the angle of twist
and ply orientation), the effects of distortions due to CTE must be included. This produces an amount

of pretwist in the beam apart from the twisting that is to occur due to the load not being applied at

the actual shear center. Examination of the various laminate layups will reveal a general relationship
between the ply orientation and angle of twist.

Open-section beams of various ply orientations were manufactured and tested to determine

what effect ply orientation and laminate layup have on the shear center location, i.e., can the shear

center in open-section structural elements be shifted toward its geometric center? As illustrated in

figure 2, the geometric center and theoretical shear center differ. Yet this moving of the shear center
can possibly be observed by comparing the various twist and deflections in each beam tested as a

specified load is applied at designated positions along the horizontal plane of the shear center

(fig. 2). Recalling that no twist (pure bending only) will occur when transverse loads are applied at

the shear center, one can better define the location of the "true" shear center. This "true" position,

since it is observed after the curing process (hence, CTE mismatches are already accounted for),

reflects the dependency of shear center on laminate layup. No attempts were made to quantify this

preload twist; however, measurements were taken prior to testing the beams to analyze trends.

Open-section beams (C-channels) of the layup [0/O]m are referred to as Form 1. The

laminates referred to as Form 2 are of ([0/®]n,[0/O]n) construction.

•-'50 --
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Figure 2. Load application points.
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MANUFACTURING METHODS AND TESTING

As previously stated, the beams were fabricated using the hand layup and hot-drape forming

techniques. Hand layup involved cutting 3-in wide strips of the unidirectional tape to the correct

lengths and wrapping the tape at proper angles across the tool (in this case a solid aluminum square

tube served as the tool) layer by layer. Intermediate vacuum bagging was performed to ensure ade-

quate compaction prior to the autoclave cure of the part. Hot-drape forming was a new procedure

used to take advantage of the multiaxis tape laying machine. Using this technique panels
(approximately 18-in wide by 72-in long) were tape layed by machine. This provided repeatability of

the part, provided adequate compaction (tape head is pressure sensitive, i.e., constant pressure as

tape is layed in place), and reduced time of manufacturing. After the panels were cut to a strip 9 by

72 in, they were "draped" over the same tool used previously, bagged, and placed in the hot-drape

forming "oven" under controlled temperatures (see the photographs in the appendix). This allowed

the material's resin to flow enough so that the panel would take the shape of the tool.

After the part was formed (regardless of method), it was vacuum bagged for autoclave cure

using standard procedures. The resulting channels were then removed from the tool and cut and

machined to dimensions suitable for testing. Figure 3 sho,,s the geometry of the finished beam prior

to instrumentation for testing.
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C-CHANNEL CROSS-SECTION C-CHANNEL COIvPOSITE BEAM

Figure 3. C-channel beams.
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The testing includedapplying load at severallocationsalong the horizontal planeof the shear
and geometric centers. After the beam was instrumented and the load cells calibrated, load was

applied in 15 to 20 lb increments until a total of 130 lb was being applied. Beginning at the theoretical
shear center, this procedure was repeated (at 0.25-in increments) until the final measurements at

the geometric center (fig. 2). During the test procedure, the deflections and strains were recorded

with the addition of load at each of the incremental points.

EFFECT OF FIBER ORIENTATION OF FLANGE DEFLECTION

Graphs 1 through 6 of section I of the appendix show deflections in the upper and lower

flanges for samples of various layups of the C-channels. Also, charts 1 through 6 show a complete

set of deflection data for the [(0/75)]12 case. The beams were instrumented as shown in figure 4. An

interesting occurrence in the beams, discovered through observation of the test results, is that the

deflections decreased as the load application point is moved away from the center of gravity. This

fact becomes more important in the following section when angle of twist is discussed. As expected,

the deflection represented by D9 on the charts is smallest; this measurement is taken at a point on
the beam's web. The top flange deflected the most in all cases examined.
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DA 6 ° II
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Figure 4. Deflection gauge locations for composite beam load tests.

Another observation was that for beams having the same ply angle, the beams of Form 1

deflected at least twice (100 percent) as much as those of Form 2 when the load was applied near

the shear center, and almost 80 percent more when loaded at the geometric center. Additionally, by

examining the deflection data at the 0.25-in increments, more interesting facts were revealed. For
example, in the case where the cross ply angle is +75 ° , it is noted that the deflection in the web and
flanges decrease (for the maximum load case) as one moves toward the calculated shear center

located 1.44 in from the geometric center. Yet, as will be discussed later, the deflections approach
zero in the web even more by moving further than 1.44 in from the shear center. This serves as an

indicator that the true shear center is further than 1.44 in away from the centroid. Therefore, one
would opt for the laminate layup of Form 2 in situations in which low deflections are desired.

Two materials systems were used: AS4/3501-6 and IM7/8552. Figures 5 through 8 show
deflections measured at the geometric centers and shear centers for a [0/75112 beam of each
material. Due to material properties, the IM7/8552 beams deflected more than the AS4/3501-6

beams. Another point of interest from the data gathered is that the further away from the geometric

center that the load is applied, the greater the difference in the deflection amounts. The explanation
of this could also form the basis for more research work.
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AS4/3501-6 [0/75112
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Figure 5. Deflections for C-channel loaded at geometric center (AS4/3501-6).
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Figure 6. Deflections for C-channel loaded at theoretical shear center (AS4/3501-6).
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IM7/8552 [0/75112
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Figure 7. Deflections for C-channel loaded at geometric center (IM7/8552).
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Figure 8. Deflections for C-channel loaded at theoretical shear center (IM7/8552).



EFFECT OF FIBER ORIENTATION OF SHEAR CENTER LOCATION

For this research effort, the theoretical shear center for the given cross section is easily
determined by the formula:

e = bht/41 .

After this shear center is known, one would expect that a transverse load applied through
this point would produce only bending, and that the same load applied through the beam's geometric

center produces both bending and torsion coupling. Yet, due to the layup of these open-section

members (no midplane symmetry) the true shear center does not follow this equation. The research

work showed that for some of the laminate layups the true shear center actually lies between the

geometric center and theoretical shear center, and could, in some cases, lie beyond the calculated
shear center. As the angle increased, the amount of twist observed and measured when the beam

was loaded at this "predicted" shear center increased also. As the load application point was

shifted toward the center of gravity (c.g.), the trend was for more twisting to occur. However, for

most of the cases tested, this increase did not occur until after the load application point had been
shifted more than 0.25 in from the shear center in the direction of the c.g. This would indicate that the

true shear center is actually between the predicted shear center and a 0.25 in toward the c.g. Yet, for
those beams of Form 1 with a cross-ply angle greater than 45 °, the "true" shear center was outside

the theoretical value, i.e., more than 1.44 in from the geometric center.

Figure 9 shows the angle of twist for various layups as calculated by the formulas 3

e = dl/2L and e = d2/2L ,

¢p= dl/(hl2) and _= d2/(b12) ,

where

h = height of web

b = width of flange

dl= web deflection

d2 = flange deflection.

For presentation purposes, beams made with only the 15 ° , 45 ° , and 75 ° cross-ply angles of
Form 1 are shown. Measured strains and deflections for the 30 ° and 60 ° cases fell between the

extremes of the charts shown. Charts 1 through 6 in section II of the appendix contain the strain data
as measured for the [(0/15)]12 beam.

Graphically, one can see from figure 10 that the angle of twist does increase with an increase

in the cross-ply laminate angle, regardless of the overall layup (Form 1 or Form 2). The range in

angle of twist as measured is between -18 ° and 55 ° for Form 1, while its range was -25 ° to 75 ° for
Form 2 beams.
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What these equations and formulas do not show, however, is the postcure inward canting of

the beams as shown in figure 7. No quantitative assessment of the amount of this cant is presented

here. Nevertheless, it should be pointed out that this phenomena occurred in all the beams. Interest-

ingly, the beams containing 45 ° plies of Form 1 canted outward (i.e., pulled away from the tool after
curing) and twisted along the length of the beam by more than 90 °. CTE's, as well as interlaminar

shear stress and strains during the curing process, would have to be closely examined. The explana-

tion of this occurrence could provide the basis for additional research work.

Test data were also used to gain insight on the location of the beam's "true" shear center

(i.e., no twist when transverse load applied) as a function of laminate layup. Due to the beams'

geometry, they are expected to twist as well as bend, and all the beams tested experienced this.

However, the focus here was to attempt to categorize the amount of twist that could be expected

from a given layup. In analyzing the test results, several interesting trends were noticed and are

reported here.

First, the beams of the Form 1 construction had higher degrees of rotation (angles of twist)

than those of Form 2 for any given cross-ply lamina. Remembering that the Form 1 beams have
cross plies only in the positive direction, whereas the Form 2 beams have both positive and negative

plies, it is obvious that, upon completion of the appropriate stiffness matrices, this in itself is not
abnormal.

Figure 10 reveals another trend. By calculations using the given geometry of the beams, one

can find that the theoretical shear center is located 1.44 in to the left of the geometric center as

shown in figure 3. By observing the charts, one can see that none of the plotted beams show an

experimental shear center that matches its theoretical value. All the beams were of the same overall

geometry and the results shown on the charts were based on a 130-1b transverse load placed on the
beams.
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The [0/75112 layup most closely approached the theoretical value and had the highest angle of

twist, while the [0/15112 layup had the lowest angle of twist. This tendency, particularly the least

twist in the [0/15112 members, was not expected. It would appear intuitively that since the tendency

to rotate in these beams would not be offset by the almost horizontal plies of the 15 ° laminates they

would have the higher twist angle. Similarly, these same beams had true shear centers located more
than 1 inch from the theoretical value.

All beams had some small amount of twist before loading due to CTE differences between the

plies during the cure process. This pretwist was most noticeable in the [0/45] 12 beams which rotated

more than 90 ° along the length of the beam. Pretwist due to CTE mismatches is not addressed here,

but it is worthy of future consideration, as is controlling the various parameters comprising the cure

cycle (e.g., cure pressure, tooling materials, cure temperature profiles). This pretwist, however, does

not significantly alter the trends reported here since the loads were applied at the calculated theo-
retical shear center and additional twisting occurred, again verifying the shifting of the "true" shear

center. Figures 1 l(a) and (b) shows the angle of twist for Form 1 beams when O is equal to 15, 45,

and 75, respectively, and only a minimal load is applied (P < 5 lb).
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Figure 1 l(a). Angle of twist versus load application points for Form 1 beam
with minimal load applied, P < 5.0 lb (AS4/3501-6).
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Assuming plate theory, it can be shown that in-plane stress resultants for laminated struc-

tures are not only functions of midplane strains but can be functions of curvatures and twists. Addi-

tionally, the in-plane forces can cause deformations that can cause curvatures or twisting deforma-

tions. 4 Plate theory does not directly apply to beams as presented in the above cases. As Vinson

points out, the above analytical procedures are valid only if no coupling exists, i.e., the D16 and D26

terms of the stiffness matrix are zero. 5 The equations were used in this paper only to produce a rela-

tive number that would allow numerical comparisons to be made. More complex analysis that con-
siders not only the nonzero cases for D16 and D26 but also hygrothermal effects would need to be

developed to more accurately assess the true values for the amount of twist produced due to lami-

nate angle orientation.

Even though plate theory may not be directly applicable to beam theory, one can use it to

gather trend data. This is an attempt to categorize the behavior of the laminates rather than assign a

quantitative value for the angle of twist. Regardless of the number assigned to this angle, the
observed trends would still be valid. The analysis method used to arrive at this value does not influ-

ence the direction or importance of the trend.

CONCLUSIONS

The magnitude of information gathered through tests performed on open-section unsymmetric

beams was tremendous. All data gathered were not discussed in this paper; however, subsequent

writings will explore other areas worthy of further investigation in an attempt to more accurately
categorize the behavior of such beams. Major findings reported here deal with the primary objective

regarding shear center location and manipulation, as well as angle of twist and warpage in these
structural members.

One important revelation is that the angles of twist and associated warpage in open-section

beams is higher for antisymmetric beams of the [0/¢]m laminate layup. Some amount of bend-

ing/stretching is expected in any antisymmetric layup due to the fact that the components of the [B]

coupling matrix, which relates stress couples to midsurface planes and stress resultants to curva-

tures, are not all zero if the structure is not symmetric abot_t its midplane. Likewise, unless the D 16

and D26 terms of the stiffness matrix [D], which relates the stress couples to curvatures, are zero,
bending/twisting will occur. 6 No attempt is made to measure the magnitude of hygrothermal effects

on twist in the beam, even though there could be as many as three different CTE's depending on

cross-ply angle and orientation, all which play a role in the warping of the beams. 7

The major fact borne out here is that laminate layup does control shear center location. As
evidenced by charts presented earlier, the same geometric shape can yield "true" shear centers that

differ by more than an inch depending on laminate layup. The location of the "true" shear center for

the type beam investigated here depends on several factors. Cross-ply angle sequence is important

(Form 1 or Form 2) in that other unsymmetrical layups using the same angle would yield different

shear center locations. Yet not to be overlooked are factor,s such as cure cycle and laminate materi-
als.
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DEFLECTIONS

PT CDDF COMPBEAM S/N 20 RUN 19

SCAN"DELTA MINUTES

10 0.075000

17 0.816650

25 1.366633

33 1.816633
41 2.149950

49 2.574950

57 3.116600

65 3.591583

73 4.108250

81 4.524900

89 5.033217

97 5.891533

105 6.341533
113 6.733183

121 7.258167

129 7.624833

137 8.166483

!145 8.616467

153 9.091467

161 9.483117

169 10.049783

177 10.516433

185 11.008083

194 11.449750

201 12.033067
210 12.499717

226 13.274700

235 13.716367

241 14.316350

250 15.049667

257 15.549650

265 16.024650

273 16.441300

282 16.899633

290 17.507950

298 17.949600

305 18.357933

314 18.824583

321 19.141250

330 20.O66217

331 20.524550

346 21.041200

" L 1"

" LBS " "

0

17.73192

29.74255

45.79056

60.05319 _

75.39111

90.68845

104,84964

119.98465

129,84473

0.30432

17.79279

30.0063

45.24277

59.87059

76.02005

90.20151

105.01193

120.26868

131.2243

0.36519
17.83336

30.14832

44.99931

60.19521

75.26938

104.68732

120.83676

130.65625

0.3449

1"7.792791

3t3.10774

4!5.03989

6'3.49953

74.98535

89.75519

104.76846

119.98465

130.16931

0.30432

17.73192

29.88457

DB 8"

INCH "

-0.00003 -0.00029

-0.00438
-0.00987! 0.0004

°0.01885 0.00129

-0.02773 0.00212

0.00036

-0.03662 0.00287

-0.04752 0.00423
-0.06319 0.00425

-0.07913 0.00521
0.00526-0.0887

-0.01173 -0.00067

-0.01073 0.001!
0.00218-0.0179

-0.02924 0.00377

-0.04203 0.00552
0.00776-0.05608

-0.06726 0.00881

-0.08014 0.00987

-0.09277 0.01083

-0.1036 0.01133

-0.013

-0.01542

-0.00065

0.00246

-0.02274 0.00406

-0.03615 0.00654

-0.04989

-0.06231

-0.08884

-0.10312

-0.11419

-0.01225

-0.015791

-0.02581

0,00894
0.01102

0.01536

0.01685

0,01751

-0.00115

0.0033

0.00568

0.00939-0.04019

-0.0544 0.01218

-0.06911 0.01525

-0.08329 0.01814

-0.0974 0.02026

-0.1124 0.0222£

-0.12092

-0.01279

0,02262

-0.0008£

-0.01868 0.00485

-0.02853 0.00717
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DEFI._ECTIQNS

354 2i.591200

362 22.074517

375 22.557833

385 23.066167

393 23,624483

402 24.066133

410 24.507800

44,95874l

59.83002!
74.985351

89.91748

105.05252

119.74121

129.92584

-0,04423 0.011141

-0.05784 0.01467

-0.07449 0.01823

-0.08921 0.02145

-0.10437 0,02332

-0.11879 0.02575
-0.12942 0.02698

418 25.649433 0.36519 -0.01371 -0.00098

434 26.507750 29.80342 -0.03241 0.00968

442 27.082733 44.8573 -0.0484' 0.01453

59.87059 -0.06498451 27.724400 0.01849

74.92447 -0.08143 0,02207

467 28.974367 90.20151 -0.09703 0.02549

475 29.582683 105.09308 -0.11432 0.02889

482 30.216000 119.9035 -0.13006 0.03171

490 30.741000 129.96643 -0.1412 0.03495

498 31.432650 0.36519 -0.01459 -0.00074

-O.O222917.81307 0.00681

29.84399 -0.0364 0.0119

44,91815 -0.05346 0.01703

59.95174 -0.07144 0.02253

74.96506 -0.08766 0,02635

89.99863 -0.10573 0.03084

1458 28.366050

505 32.090967

513 32.607617

522 33.374267

529 33.957600

537 34.532583

546 35.082567

554 35.590883

562 36.140883
104,8902 -0.12126

-0.13889

-0.15148570 36.882517
119.74121

129.64185

0.03331

0.03703
0.03842

Chart 2
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DEFLEC'13ONS

" DB 6" " DB 11"

" INCH " " INCH •

-0.00008

0.00689

0.01142

0.01897

0.02542

-0.00028

0.00122

" DA 8"
" INCH "

0.00002

-0.00676

0.00235 -0.01257

0.00485 -0.02238

0.00687 -0.03193

0.032 O.00922

0.04023 0.01242

0.01261

0.01492:

0.01539

-0.00024

0.00471

0.05155

0.06194

0.06822

0.00293

0.01259

0.007760.02014
0.03057 0.01134

0.04172 0.01609
0.0204710.O5328

0.06227

O.O7276

0.0822

-0.04071

DA 7"

" INCH "

-0.00007

" DA 6"

" INCH "

-0.00013

0.00738-0.00012
-0.0001 0.01311

-0.00013 0.0219

-0.0001 0.03001

-0.0001 0.03854

" DA 11"
" INCH "

-0.00011

-0.00185

-0.00243

-0.00366

-0.00408

-0.00299

-0.05194 0.00023 0.04998 -0.00101

-0.06814 0.00021 0.06578 -0.00221
-0.08356 0.00074 0.08113 -0.00144

-0.09245

-0.00846

0,00178 0.09037

0.00251 0.00613

-0.00086 0.01282-0.01544

-0.00291-0.02517

-0.03949

-0.05513

-0.07346

-0.00499

0.02348 -0.08434

0.0264 -0.09908

0.02885 -0.11244

-0.00694

-0.0091

-0.00918
-0.00912

-0.00915

0.02049

0.03173=

0.04436

0.05826

0.0897; 0.03035

0.00467 -0.00019

0.06948

0.08208

0.01742 0.00748

0.01186

0.09475

0.1048

0.00769

0.0175

0.02334 -0.07193

0.02847 -0.08856

-0.1235 -0.00913

-0.01266 0.00094!

-0.02275 -0.00477 0.01684

-0.03478 -0.0077 0.02543
-0.05317 -£,.01115 0.03819 !

-0.12059

-0.01473

-0.01703
-0.02045

-0.13644 -0.02094

-0.14795 -0.02152

-0.00739 C).00041

-0.00742

0.02667

0.03942

0.0523

0.06431

-0.01212

-0.01726

-0.02621

0.08708 0.0375

0.09849 0.04099

0.10644 0.04282

0.00472 -0.00118

0.02034

0.03194

0.04688

0.06128!

0.00951

-O.O2155

-0.02565

0.01501 -0.0426

0.02268 -0.0639

0.02969

0.0753 0.03703

-0.08454

-0.10441

-O.OOO52

0.00183

-0.0067T

-0.01112

-0.01602

-0.01989

-0.02378

-0.02494

-0.02735

-0.0283

-0.02879

-0.00075

-0.01262

-0.01983

-0.02789

-0.12268 -0.02879

-0.14017 -0.03011
-0.03212

0.08813 0.04273

0.09994 0.04649

0.11233 0.05162 -0.15803

0.05214 -0.03498

0.06474 -0.0406_

0.09039 -0.04911

0.10423 -0.05255

0.1192

0.006361

0.11454

0.00725

0.018

0.02843

-0.05421

-0.00207

-0.0183_

-0.02845

-0.0393. =0.04202

0.05667 -0.0485_

0.0715 -0.0570
0.08517 -0.0640=

0.09889 -0.0690_

0.11291

0.05294 -0.16737 -0.0326 0.12128

-0.00319-0.00061 -0.01483

-0.01277

-O.O1652
0.024661 0.01266 -0.03508

0.03681 0.01859 -0.04956

0.00732

0.021

0.03074

-0.074

-0.0771

-0.0062_

-0.0254,

-0.0366=
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DEFLECTIONS

0.0534J

0.06856 _
0.02828 -0.07406 -0.02301 0.04627 -0.05064

0,036 -0.09511 -0.02776 0.060351 -0,06191

0.08386 0.04339

0.09771 0.04979

0.11087 0.05435

0.12367 0.05915

0.1322

0.0077

0.04277

0.06174 _

-0.00042

-0.1169

-0.13726

-0.15655

-0.17523

-0.18744

-0.018311

-0.03252

-0.03662

-0.03936

-0.04177

-0.0436

-0.00466

0.07567 -0.07231

0.09026 -0.08143

0.10458 -0.08909

0.11877

0.12886

0.00925

-0.09608

-0.10008

-0.00789

-0,045570,02292 -0.05831 -0,02104 0.03473

0.06108 0.03369 -0.08503 -0.02899 0.05048 -0.06288

0.07845 0.04273 -0.10936 -0.03582 0.06626 -0.07735

0.09453 0.05106 -0.13374 -0.04128 0.08195 -0.09089

0.10966: 0.05807 -0.15614 -0.04623 0.09757 -0.10199
0.12502 -0.05067 O.113260.0647

0.13873 0.06955

0,1478 0.07346

0.00887 -0.000241

0.03099 0.01671

0.0482 0.02786

-0.11321

0.06921

-0.17883

-0.19874 -0.05447 0.12833 -0.1214

-0.21218 -0.05794 0.13882 -0.12655

-0.01974 -0.00745 0.01071 -0.00983

-0.04203 -0.01713 0.02415 -0.03679

-0.066911 -0.02613 0.03777 -0.05518

0.04009 -0.09724 -0.03566 0.05498 -0.07661

0.08806 0.05073 -0.1255 -0.04435 0.07197 -0.0941

0.10458 0.05882 -0.14938 -0.05059 0.08733 -0.10939
I

0.121771 0.06743 -0.17597 -0.05695 0.10409 -0.12397

0.11908 -0.13583

0.13516 -0.14749

-0.061410.13643 0.07284

0.15214 0.08

0.1625 0.08263

-0.19669

-0.22037 -0.06686

-0.2352 -0.06897 0.14649 -0.15392
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DEFLECTIONS

" D 9" " D 14" " D 13"

" INCH • • INCH " " INCH "

0

0.02193

0.03925

0.06991

0.0965

0.12187

0.15467

0.20454
0.24951

0.2761

0.01683
0.0441

0.07564
0.11741

0.16219

0.21594

0.00019

-0.02177

-0.03713

-0.06337:

-0.00005

-0.02025

-0.03398

• D 12"

" INCH "

" D 10"

• INCH "

-0.0001 -0.00005

-0.01786 0.01736

-0.03048

-0.04965-0.05634

-0.0863 -0.07592 -0.06687

-0.10924 -0.09535 -0.08512

-0.13743 -0.11916 -0.10826

-0.15203

-0.18245

-0.20069

-0.00926

-0.03671

-0.05922 !

-0.17455

-0.21051

-0.23112

-0.0105

-0.03985

-0.13966

0.0297

0.04894

-0.06628

0.06615

0.08411!

0.10769

0.13842

-0.16916 0.16842

-0.18804 0.18711

-0.01037 0.0113

-0.02891 0.02994

-0.04598

-0.10205 -0.08964 -0.07025

-0.14015 -0.12208 -0.09671

-0.15587-0.18077

0.24825 -0.21012 -0.18245
0.29114 -0.24589 -0.21345

-0.241860.32937

-0.26384

-0.01473!

-0.0512

-0.12469

-0.14842

-0.27835

-0.17464

-0.20066

-0.220820.36158 -0.30362

0.02634 -0.01711

0.06472

-0.01375

-0.03713
P

-0.05645

-0.05695!

0.04563

0.10242

0.06951

0.09595

0.12353

0.14706 !

0.17315

0.19856

0.21859

0.01475

0.15292

0.20794

0.25601

0.03779

-0.08883 -0.07856 0.05668

-0.13237 -0.11556 -0.08385 0.08391

-0.17689 -0.15385 -0.11315

-0.21829 -0.18888 -0.14093

0.34955 -0.19558

0.39564 -0.22454

-0.24538
-0.01247

-0.0407

-0.29682

-0.33511

0.42786 -0.36193

0.01596

-0.25664

0.07748

0.12318
0.1831

0.24262:

0.29958

0.35169

-0.01283

-0.06784

-0.2901_

-0.31384

-0.0132

-0.0596

0.11277

0.13951

O.19274

0.22086

0.24148

0.0147

0.04168

0.06379-0.10691 -0.09348 -0.06364
-0.15822 -0.13729 -0.09432 0.09348

-0.20818 -0.113 -0.12577 0.12367

-0.25639 -0.22142 -0.15703 0.15406

-0.30051 -0.25962 -0.18658 0.18223

0.40224 -0.3425 -0.29522 -0.21534

0.45405 -0.38565 -0.33285 -0.24577

-0.407810.48142

0.03508 -0.02294

-0.08339

-0.12363

0.10251

0.1439

-0.35329 -0.26348

-0.01355

-0.04603

-0.06966

-0.01795

-0.0716

-0.10711

0.20981

0.23871

0.2560E

0.0152_

0.0462;

0.06941
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DEFLECTIONS

0.21143 -o.18174 -0.15702

0.2727 -0.23423 -0.20169

0.33374 -0.28749 -0.2481

0.39244

0.44707

0.4983!

0.53478!

0.04303
0.16815

0.24253

0.31579

0.38245

-0.3355

-0.38176

-0.28975

-0.330161

-0.10366 0.10197

-0.13541 0.13265

-0.16887 0.16398

-0.20086

-0.23217

-0.42725 -0.36893 -0.26279

-0.4564 -0.39466 -0.28432

-0.02159

-0.12477

-0.17957

-0.23121

-0.02682

-0.14481
-0.208571

-0.26902

-0.32695 -0.2815

0.44319 -0.38021 -0.32805

0.50587 -0.43502 -0.37565

0.56137 -0.48323 -0.41759

0.599991 -0.44562

-0.02438
-0.08955

0.04691

0.12163

-0.51549

-0.03013

-0.01649

-0.07861

-0.11491

-0.15042

-0.18579

0.193531

0.22332

0.25253

0.27325

O.O2146

0.0815

O.11534

-0.10438

0.14829

0.18085

-0.21994 0.21267

-0.25506 0.24463

-0.28803 0.27512

-0.31112

-0.01903
-0.05523

0.29633

0.02314

0.05772

0.18916 -0.16406 -0.14085 -0.08654 0.08761

0.27474 -0.2385 -0.20443 -0.12699 0.12422

-0.16574i

-O.20125

-0.23951

-0.306150.35256 -0.26288

0.41932 -0.36466 -0.31365

0.49267 -0.42841 -0.36778
-0.47934 -0.41376

-0.53649 -0.46309

0.55244

O.61571
0.65918! -0.49457-0.57264

0.15954

0.19165

0.2258£
0.2560_-0.27346

-0.31063 0.28923

-0.33578 0.3121_
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SECTION II

Test Strain Data

p__ P,tGE BI..AI_K NOT FR.MED
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STRAINS

1T1009"

MST "
0

i " 1T1010" !" MST .... MST "

" 1T1011" " 1T1012" q " 1T1013" i " 2T1009"

-0.26075 -1.04522

-1.820521 -7.04018 -15.15401

-0.26009 -8.3439 -21.4245

1.0403 -11.47288 -31.87544

2.08057 -14.60185

2.86079

1.56043

1.0403

1.04031
0.78021

-40.49747,

-17.99157 -47.02927

-22.16352

-26.07473

-30.50742

'° MST " " MST " ! " MST "

-1.04236 -1.04527 -1.03109

-3.90876 -12.02065 16.75423
i

-3.38757

0.2607

0.2607

-56.95758 -0.26048

-65.3183 -1.82403

-71.58899 -2.08472

-31.81113 -74.72424

1.56446 -1.567832.08057

-1.56044 -5.73647
-4.68134 -9.90842

-29.00151

-5.461561

-5.72161

-41.80379

-14.60185: -57.2189

-18.25231 -70.80508

-5.20148' -22.42426 -82.56235

-5.9817 -25.0317 -93.79721

-8.32235 -29.98594 -106.07709

-34.41862 -116.00543-8.84251

-9.62273

1.0403

-4.68134

-37.54759 -121.49219

1.04297 -3.13545

-5.99721 -35.7946

-7.54213 -10.16916 -53.56104

-8.06229 -16.16631 -74.72424

-12.22346 -21.12055 -95.88724

-13.52382

-16.6447

-19.24542!

-22.88646

-23.92676

-8.58243

-25.81399 -110.51862

-30.76817 -126.71747

-35.98308 -138.99731

-41.4588 -151.7998

-44.06628 -161.20551

-3.91121 -6.532

-13.03739 -48.33557

-18.51305 -71.3277

-25.0317 -97.45505

-29.98594 -120.18567

-34.94011 -141.08752

-15.08426

-18.98537

-21.84616

-24.4469

-27.82787
-28.86815 -39.89429 -154.41241

-31.72896 -43.8055 -170.35016

-35.63007 -50.32413 -185.24268
-195.43231-39.01102 -53.71387

-16.90477

-23.4O663

-26.78757

-30.42859

-8.60464 -12.54118

-18.25231 -61.92175

-23.98873 -88.0491

-29.98594 -118.35675

-3.12688

2.34521

6.77516

5.47231

8,3387

11.72628

14.59268

17.45908

18.76192

20.32547

21.62833

2.8664

8.59919

9.64156

16.6772

21 .:36784

-15.15646 27.32236

-13.58858 41.75674

-17.24705 53.35596

-17.769661 56.44922
-20.644161 66.24393

t

-26.13184! 72.9458

-27.43847 76.55438 !

-28.74505 76.03903
3.13581 0.77301

-2.09054

-13.58858

42.01483

-25.60925

64.18216

86.86484-17.50835
-18.81492! 108.00107

-21.16682 125.52875

-21.95078 140.9942
155.94434

-26.6545 167.80121

-25.60925 173.98737
4.965031 2.31984

f

-4.70374 56.96455

-14.895151 86.34909

-15.41781 120.37329

-19.33758 155.42859

-21.95078 176.5648825.01591'
28.14279 -25.87054 200.79437

30.7487 -28.74505 219.35309

33.09392

33.87558

-6.25397

-0.52118

5.21162

13.02914

2O.84666
27.8823

34.13628

37,26315

41 43262
4377783

-15.63483

-30.83558 234.30322

244.61328-29.529

-3.91977 -4.6396g

-15.94042 63.66641

-22.73473 100.78387

-24.56393 146.1492!

-27.69978 186.87531

-29.00634 220.89954

-28.48374 244.6132[
-32.9261 268.8427;

-0.78167

5.47231

15.63504

-36.58456 291.0101_
-36.84592: 305.4445_

-9.40746 -6.9595

-17.76966 80.6787"

-26.91581 127.0751

-29.79031 178.6270
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STRAINS

-35.36998 i -36.50456
-39.531161 -41.4588

-144,74542 25.27639 -29.79031i 226.57031

-167.4762 33.6151 -31.09689 264.71887
301.83594-42.65205 -47.71671 i -187.85547 41.432621 -35.278

-46.033 -52.93167 -207.45105 48.72894 -37.36853 337.40662

-50.194171 -58.66803 -222.86597 53.41937 -39.19777 361.63611
-53.31505 -62.05774 -233.31689

-23.40663 -14.60185 -18.55057

-30,42859 -23,20649 -71.58899
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SECTION III

Manufacturing and Testing Photographs
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C-channel with load being applied. No rotation has occurred at this point of the test.
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Test being performed on L-angle. Beam has started to rotate.
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